A WARNING
INTERNALS

INCLUDED

©
/S

NET GC Internals

Cenerations

@konradkokosa / @dotnetosorg

1/37

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Generations - physical organization, card tables, demotion, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

2 /37

Partitioning

By object:

e Sjze
type/kind
mutability
lifetime

3/ 37

Partitioning

Size:

e copying cost!

e different quantities
o many, many small objects often allocated 3 Small Object Heap
o rare large objects » Large Object Heap

4 [37

Partitioning

Size:

e copying cost!

e different quantities
o many, many small objects often allocated 3 Small Object Heap
o rare large objects » Large Object Heap

Type/kind:

e pinned or not pinned > Pinned Object Heap (.NET 5+)

4 [37

Partitioning

Size:

e copying cost!
e different quantities
o many, many small objects often allocated 3 Small Object Heap

o rare large objects » Large Object Heap
Type/kind:
e pinned or not pinned » Pinned Object Heap ((NET 5+)

Lifetime;

e "many, many small objects often allocated" - sensible to split SOH even further

4 [37

Partitioning - lifetime

weak/strong generational hypothesis

P
-

"old”
generation

"young® "temporary”
generation generation

number of objects

N

lifetime

5/37

Partitioning - logical

6 /37

Partitioning - logical

e object allocation in genO/LOH

6 /37

Partitioning - logical

e object allocation in genO/LOH
e GC collects given generation and all younger, so we have:
o gen O GC
o gen1GC -gen 04l
o Full GC-gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

6 /37

Partitioning - logical

e object allocation in genO/LOH
e GC collects given generation and all younger, so we have:
o gen O GC
o gen1GC -gen 04l
o Full GC-gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)
e if an objects in generation X survives the GC considering this generation, is
promoted to generation X+1 (or stays in gen2)

6 /37

Partitioning - logical

e object allocation in genO/LOH
e GC collects given generation and all younger, so we have:

o gen O GC

o gen1GC -gen 04l
o Full GC-gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

e if an objects in generation X survives the GC considering this generation, is

promoted to generation X+1 (or stays in gen2)
e When generation isn't collected, we simply treat all objects in that generation as

live

6 /37

Partitioning - logical

e object allocation in genO/LOH
e GC collects given generation and all younger, so we have:
o gen O GC
o gen1GC -gen 04l
o Full GC-gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)
e if an objects in generation X survives the GC considering this generation, is
promoted to generation X+1 (or stays in gen2)
e When generation isn't collected, we simply treat all objects in that generation as
live
e generations are considered in various places, fe. finalization queue is
generational too

6 /37

Partitioning - physical

lower address higher address
(a) reserved
L J
Y
block
(b) reserved reserved
L A J
Y Y
SOH segment LOH segment
committed committed
(c) reserved reserved
S—? e
generations: 0,1 and 2 generation 3 (LOH)

7 /37

Partitioning - physical

[SR0000026 700000000 Managed Heap
0000026700000000 |Managed Heap

393216 K

4K 4K

4 Read/Wite
Read/ Wiite

D000026700001000 |Managed Heap Jbytes 24bytes 24 byles Read/Wite Gen2
DO00026700001018 | Managed Heap Mbytes 24bytes 24 bytes Read/Wite Gen1
D000026700001030 |Managed Heap 59K 259 K 259K 204 K 204 K Read/Wite Genl
0000026700042000 |Managed Heap 261,880 K Reserved
0000026710000000 |Managed Heap T2K T2K 2K 16 K 16K Read Write Large Object Heap
DO00026710012000 |Managed Heap 131,000 K Reserved
Workstation Server
32-hit 64-bit 32-bit 64-bit
SOH 16 MB 256 MB 64 MB (#CPU<=4) 4 GB (#CPU<=4)
32 MB (#CPU<=8) 2 GB (#CPU<=8)
16 MB (#CPU=8) 1 GB (#CPU>8)
LOH 16 MB 128 MB 32 MB 256 MB

8 /37

Partitioning - physical (Workstation GC)

SOH

LOH

SOH

LOH

(a) all-at- once configuration,

(b) two-stage configuration (the same as each-block configuration)

9 /37

Partitioning - physical (Server GC)

(a)

(b)

LOH,LOH, LOH,LOH,

L 1L [T 11
SOH, SOH, SOH, SOH,
[[1] |
SOH; SOH, SOH; SOH.
NN
LOH,LOH, LOH,LOH,
SOH, SOH, SOH, SOH,
[OH, LOH, LOH, LOH,

10/ 37

Partitioning - segment "anatomy”

OS_PAGE_SIZE (4kB)

% 7
/'/:
ot gl
segment_info i objects
H . g
; comvmitedi '
} : Y J
. . resefved
segment begin allocated
(mem)

/37

Partitioning - segment "anatomy”

OS_PAGE_SIZE (4kB)

% 7
/'/:
segment_info i objects
H . g
i comvmitedi '
: : Y
; i resefved
segment begin allocated

(mem)

Y
block
(b) I reserve d I rved |
SOH segment LOH segment
mmitted mmitted
(c) I reserved | re: d |
-
general tions: 0,1 and 2 genera tion 3 (LOH)

Cenerations

12 /37

Cenerations

0 1 2
r A A\ r A 1 I \
@ (Al
(b) :17es
© 9] 5c

E
NoN

13/ 37

Generations - Sweeping overview

(a) Objects A, B and C were allocated.

[\

fub]
‘-""g_
=2
)

(b) GC was triggered and only B & C
survived. Genl boundary is extended to
Y) include promoted B and C.

)

(c) Object D was allocated.

-

§
|

- Y - [- R
AN

(c)l jjjéy (d) GC was triggered and only C & D
1 ; survived. Generations boundaries are
(Ay A ‘ extended to include C (promoted to
@ [e gen?2) and D (promoted to genl).
, X rj\q A ‘ (e) Object E was allocated.
©| ¢
”’% (.) and the story continues...

14 /37

Generations - Sweeping overview

<

N
- h

=3

N

\m\\" >_L

>N

>N

>0

(e)

(a) Objects A, B and C were allocated.

(b) GC was triggered and only B & C
survived. Genl boundary is extended to
include promoted B and C.

(c) Object D was allocated.

(d) GC was triggered and only C &D
survived. Generations boundaries are
extended to include C (promoted to
gen?2) and D (promoted to genl).

(e) Object E was allocated.

(.) and the story continues...

15/ 37

Cenerations

>N
>0

LOH
A

-

I |

\ objects

—

16/ 37

Generations - gen0 GC

(a) After Mark
(b) After Sweep or...

(c) After Compact

2 1 0 LOH
A A A A
.
7
2 0 LOH
. e A
%
2 1 LOH
A A, M

17 / 37

Generations - genl GC

2 1 0 LOH
I i T A i A 1 [i 1
) g | 7
2 1 0 LOH
| A T A T_)L\ A 1
b) N
2 10 LOH
I A YATAW [A 1
C) X
_

(a) After Mark
(b) After Sweep or...

(c) After Compact

18 /37

Generations - gen2 GC ("Full GC")

2 1 0 LOH
2 1 0 LOH
A — A A VA
U .
: ?2/ 10 L?H

N
NN
\

(a) After Mark.
(b) After Sweep or...

(c) After Compact

19/ 37

Generations - gen0O & genl

While compacting, we may "allocate in the older generation" some promoted plugs

- to make use of free-list allocations and fight/reuse fragmentation®®

LOH

free space

.“:’:;"/

ST
N
L,

.”../.M.M?

-

[1ee space ’/

20/ 37

Generations - running out of SOH segment space

At some point gens may grow not to fit into SOH segment - gen0/1 may not have

enough space:

2 1 0 LOH
A A A A
T 1 1]
s 4
e
) % %7 7 L

21/ 37

Generations - running out of SOH segment space

At some point gens may grow not to fit into SOH segment - gen0/1 may not have
enough space:

1 0 LOH
A A

1 1 1 1
7 7
7 e
7 7 7
/ /% % v I // 7

A new ephemeral segment will be created during compacting GC.

7
%547
X

2 LOH 10
A A
f \ i \

Z Z %
////////// I ////// %

]

21/ 37

Generations - running out of SOH segment space

At some point gens may grow not to fit into SOH segment - gen0/1 may not have
enough space:

2 1 0 LOH
A A A A
1 1 1 \
7 Z % 7
g Vi Z %
Gl Ve A 7 Vi

A new ephemeral segment will be created during compacting GC.

2 LOH 10
A A
I 1 i 1
/ -
S o "
7 i o s e A

During this process:

e current ephemeral segment is changed into gen2-only - all reachable objects
from gen1& 2 are being compacted there

e Nnew ephemeral segment - all reachable objects from gen O are being
compacted there (as gen 1 objects)

e LOH segment as usual

21/ 37

Generations - gen2 segments

And the story continues... current ephemeral segment may be filled, we need a new
ephemeral segment:

e commit a new segment - as just presented
e reuse a segment from standby list
e an already existing gen2-only segment with small gen2 may be reused as a new

ephemeral segment & - The old ephemeral segment will become gen2-only

segment
before GC after GC
gen2-only gen2 m
gen2-only gen2 v
2-onl new
gen2-only 9822 ‘ ephemeral_ —'_f_;ﬂe;nZ g:enl gen0
ephemeral genl geno-t—" ”":'—genz

22 /37

Allocation budget

23 /37

Allocation budget

e objects are allocated in gen0O/LOH or "allocated" (promoted) in genl/2

23 /37

Allocation budget

e objects are allocated in gen0O/LOH or "allocated" (promoted) in genl/2
e thus, generations may grow in time and exceed their allocation budget

23 /37

Allocation budget

e objects are allocated in gen0O/LOH or "allocated" (promoted) in genl/2

e thus, generations may grow in time and exceed their allocation budget

e GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation

23 /37

Allocation budget

e objects are allocated in gen0O/LOH or "allocated" (promoted) in genl/2

e thus, generations may grow in time and exceed their allocation budget

e GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation

e thus, typical flow is:

23 /37

Allocation budget

objects are allocated in genO/LOH or "allocated" (promoted) in genl/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical flow is:
o we allocate an object

23 /37

Allocation budget

e objects are allocated in gen0O/LOH or "allocated" (promoted) in genl/2

e thus, generations may grow in time and exceed their allocation budget

e GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation

e thus, typical flow is:

o we allocate an object
o EE/GC can't find space for a new allocation context (refer to Episode 07.

Allocations)

23 /37

Allocation budget

objects are allocated in genO/LOH or "allocated" (promoted) in genl/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical flow is:
o we allocate an object
o EE/GC can't find space for a new allocation context (refer to Episode 07.
Allocations)
o the GC is triggered - initialy for genO

23 /37

Allocation budget

objects are allocated in genO/LOH or "allocated" (promoted) in genl/2

thus, generations may grow in time and exceed their allocation budget

GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation

thus, typical flow is:

©)

©)

we allocate an object

EE/GC can't find space for a new allocation context (refer to Episode O7.
Allocations)

the GC is triggered - initialy for genO

the GC selects the condemned generation - and the oldest generation with
its allocation budget exceeded is one of the main reasons. Running out of
ephemeral segment may be another, ...

23 /37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

24 [37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

e changed dynamically on each GC that collects that generation

24 [37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

e changed dynamically on each GC that collects that generation
e |lies in between given minimum and maximum (*)

24 [37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

e changed dynamically on each GC that collects that generation

e |lies in between given minimum and maximum (*)
e depends mostly on the survival rate (ratio of the size of objects that survived):

o high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
o small survival rate - smaller allocation budget as opposite to above (and we

want to keep generations small)

24 [37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (%)
depends mostly on the survival rate (ratio of the size of objects that survived):
o high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
o small survival rate - smaller allocation budget as opposite to above (and we
want to keep generations small)
the younger generation, the more dynamic change to the survival rate (*)

new allocation
budget A

GenSize max - -

GenSize ;- -

=
survival
0.0 1.0 rate

24 [37

Allocation budget - total size the GC would like to allow to be spent on allocations
IN @ particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (%)
depends mostly on the survival rate (ratio of the size of objects that survived):
o high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
o small survival rate - smaller allocation budget as opposite to above (and we
want to keep generations small)
e the younger generation, the more dynamic change to the survival rate (*)

new allocation
budget A

GenSize max - -

GenSize ;- -

=
survival
0.0 1.0 rate

(*) controlled by per-generation static data

24 [37

Per-generation static data

1) related to the CPU cache size. In general, a little smaller in case of Workstation mode (first number) than in Server mode (second number).

2-3) For Workstation GC with Concurrent version - 6 MB. For Server GC and Workstation GC with Non-concurrent version - half of the ephemeral

segment size

Table 7-1. Static GC Data - “Balanced” Mode (Assuming 8 MB LLC Cache)

Min alloc maxalloc fragmentation fragmentation limit max_ time_ gc_

budget budget limit burdenlimit limit clock clock

Gen0 1)4/15MB 2)6-200 40000 0.5 9.0 20.0 1,000 1
MB ms

Gen1 160 kB 3) at least 80000 0.5 20 7.0 10,000 10
6 MB ms

Gen2 256 kB SSIZE_T_ 200000 0.25 1.2 1.8 100,000 100
MAX ms

LOH 3MB SSIZET_ 0O 0.0 1.25 45 0 ms 0
MAX

25/ 37

Card tables

26 /37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations.

27 [37

Card tables

During GC's Mark phase we consider only given condemned and younger

generations. Imagine gen0 GC here:

roots &—"

(like stack.)-\

Generation 0

—-————\

A

h

H

MT

vl

B

¥\

H

MT

MT

MT

/

AN
Generation 1 \ /

E

H

mt| {

F

H

MT

MT

27 [37

Card tables

During GC's Mark phase we consider only given condemned and younger

generations. Imagine gen0 GC here:

Generation 0

roots g1 — P

MT C|H |MT

(ke stack)] A[H [mT 1 B|H

MT

¥\

/

AN

Generation 1 \
H M

T

{ FH [mT

MT

So, yes. We would "loose" object ¢ @)

27 [37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

Generation 0

roots g1 — P

(Iikestack.)-\ Al H |MT 71 B|H[mMT C|H |MT D| H [mT] 4

¥\\ / //
Generation 1 \ / {
H [mt| { FlH [wT

T

So, yes. We would "loose" object ¢ @ We need to remeber somewhere such "older-
to-younger"references.

27 [37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

Generation 0

roots g1 — P

(Iikestack.)-\ Al H |MT 71 B|H[mMT C|H |MT D| H [mT] 4

¥\\ / //
Generation 1 \ / {
H [mt| { FlH [wT

T

So, yes. We would "loose" object ¢ @ We need to remeber somewhere such "older-
to-younger'references. In literature, it is called remembered set.

27 [37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

Generation 0

roots &1 —\ P
(like stack.)-\

AlH |MT 71 B|H|mT C|H |MT D| H |MT

) — '

< / /}

Generation 1 \ / {
H (wr| { FlH [vT

T

So, yes. We would "loose" object ¢ @ We need to remeber somewhere such "older-
to-younger'references. In literature, it is called remembered set.

BTW, "vounger-to-older"references are not a problem due to the "always collect
given and younger generation" 3

27 [37

Card tables

Generation 0
roots =1 —\ P
(likestack’f\ AlH |MT 71 B|H|MT C|H |MT D|H |MT| ¢
AN — Z
Generation 1 \ / {
Eln (mr| { FIH [mT G| H [MT

We could store every single "older-to-younger"reference in some remembered set

but it would introduce super overhead - we may have many such references
changing all the time!

Instead, runtime tracks less granular information about it - covering not single
object with "older-to-younger" reference, but for whole memory region.

28 /37

Card tables

roots &= N

(ike stack)] A[H [mT 7] B

Card table

Generation "young"

R

MT

MT

MT

N

|
Generation "old"

MT

card: clean

card: clean

H |MT

card: clean

G|H

card: clean

| N— g .

[1]

I}

"]

S m—
single bit

29 /37

Card tables

Generation "young"

roots s— 1 ——\ P
(like stack.)-\

AlH |MT 71 B|H|MT C|H |MmT D|H |MT

¥\

N—

- N

veln [wr| { A F|H |MT G| H |MT
vV 1
G | |
card: clean I??//caygégmy/////d card: clean 1 card: clean I card: ...
Card table = z — I N z 1 2 1 1
g
single bit

When executing E.field = C, write-barrier updates the card.

30/ 37

Card tables

Generation "young"

roots =1 —\ P

(Iikestack.)-\ A|H |MT 71 B|H|[MT C|H |MT D|H [MT

N—

Ll b

v
v 7
veln [wr| { A F|H |MT G| H |MT
vV 1
A | :
card: clean I??//caygégmy/////d card: clean 1 card: clean I card: ...
Card table = z — I N z 1 2 1 1
g
single bit

When executing E.field = C, write-barrier updates the card. Single card covers
256/128 bytes (64/32-bit runtime).

30/ 37

Card tables

Generation "young"

roots =1 —\ P

(Iikestack.)-\ A|H |MT 71 B|H|[MT C|H |MT D|H [MT

N—

- N

LI ZEAE G|H [MT
vV 1
l??ff//////////?%l I I
LS
card: clean I??f?éé;’&gmy/////d card: clean 1 card: clean I card: ...
Card table = z — I N z 1 2 1 1
W

single bit

When executing E.field = C, write-barrier updates the card. Single card covers
256/128 bytes (64/32-bit runtime). But, for performance, write-barrier sets the whole
byte (0xFF), so 2048/1024 bytes regions are treated "dirty".

30/ 37

Card tables

LEAF_ENTRY JIT_WriteBarrier_PostGrow64, _TEXT
mov [rex], rdx

PATCH_LABEL JIT _WriteBarrier_PostGrow64_Patch_Label_Lower

mov rax, OFOFOFOFOFOFOFOFOh
; Check the lower and upper ephemeral region bounds
cmp rdx, rax
jb Exit
PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Upper
mov r8, OFOFOFOFOFOFOFOFOh
cmp rdx, r8
jae Exit

PATIC Y B T s CeE s rr eI tora N6 AN s tehiish e IMCaraTaG e

mov rax, OFOFOFOFOFOFOFOFOh
; Touch the card table entry, if not already dirty.
shr rcx, 0Bh
cmp byte ptr [rcx + rax], OFFh
jne UpdateCardTable
UpdateCardTable:
mov byte ptr [rcx + rax], OFFh

LEAF_END_MARKED JIT_WriteBarrier_PostGrow64, _TEXT

31/ 37

Card bundles

On top of that, there is card bundle mechanism maintained by MEM_WRITE_WATCH or
manually to have even less granular, high-level starting point to traverse card tables.

32 /37

Demotion

33 /37

Cenerations - Demotion

o "if it survives it is promoted to older generation”...
e but pinning may destroy this great idea... with fragmentation:

34 [37

Cenerations - Demotion

o "if it survives it is promoted to older generation”...
e but pinning may destroy this great idea... with fragmentation:

34 [37

Cenerations - Demotion

o "if it survives it is promoted to older generation”...
e but pinning may destroy this great idea... with fragmentation:

gen 0
I A |l
HE HiE HE 7/ HiE HiE
V= = = 00 V= V=
) gen1 gen 0
B A A
T v

e b |

e SO, let's introduce demotion - as the opposite of promotion

34 [37

Cenerations

- Demotion

alloc

_ptr

i alloc_ptr

alloc_ptr

£ alloc_ptr

gen 0
A

-

35/ 37

Cenerations - Demotion

Demotion from genl to genO:

gen 1 gen 0
A ; A
= = =i 9y "=
e = [e e e |
gen 2 g en 1 gen 0
gen 1 gen 0
r A r_A
4 i i
= = (e % 7t
gt?\nz ;genl ' geED

e e |

36 /37

Cenerations - Demotion

Sometimes a plug will just not fit and demotion does not help:

gen 1

A

=\

N
A |
(=

sssss

/M

S
AL

Bt

AL
S

,,

7
2

N

o

37 /37

Cenerations - Demotion

Sometimes a plug will just not fit and demotion does not help:

e e i
wel gl ngl niE i nE

Only some pinned plugs may be demoted:

gen 1
A

'f::'_if: 6 .

.
.
.
"
"

37 /37

Cenerations - Demotion

Sometimes a plug will just not fit and demotion does not help:

Ui it Wb v Yt v Wit

MT
MT |
M

W%’/

%)

A W 90 0 b 90 i

Only some pinned plugs may be demoted:

gen 1
A

i

'W 7777777

Note. To emphasize it - in the current implementation, only pinned plugs may be

demoted (which may include single non-pinned object in case of extended pinned
plug) 37 /37

