

.NET GC Internals

Generations
@konradkokosa / @dotnetosorg

1 / 37

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Generations - physical organization, card tables, demotion, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 37

Partitioning

By object:

size
type/kind
mutability
lifetime
...

3 / 37

Partitioning

Size:

copying cost!
different quantities

many, many small objects often allocated 👉 Small Object Heap
rare large objects 👉 Large Object Heap

4 / 37

Partitioning

Size:

copying cost!
different quantities

many, many small objects often allocated 👉 Small Object Heap
rare large objects 👉 Large Object Heap

Type/kind:

pinned or not pinned 👉 Pinned Object Heap (.NET 5+)

4 / 37

Partitioning

Size:

copying cost!
different quantities

many, many small objects often allocated 👉 Small Object Heap
rare large objects 👉 Large Object Heap

Type/kind:

pinned or not pinned 👉 Pinned Object Heap (.NET 5+)

Lifetime:

"many, many small objects often allocated" - sensible to split SOH even further

4 / 37

Partitioning - lifetime

weak/strong generational hypothesis

5 / 37

Partitioning - logical

6 / 37

Partitioning - logical

object allocation in gen0/LOH

6 / 37

Partitioning - logical

object allocation in gen0/LOH
GC collects given generation and all younger, so we have:

gen 0 GC
gen 1 GC - gen 0&1
Full GC - gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

6 / 37

Partitioning - logical

object allocation in gen0/LOH
GC collects given generation and all younger, so we have:

gen 0 GC
gen 1 GC - gen 0&1
Full GC - gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

if an objects in generation X survives the GC considering this generation, is
promoted to generation X+1 (or stays in gen2)

6 / 37

Partitioning - logical

object allocation in gen0/LOH
GC collects given generation and all younger, so we have:

gen 0 GC
gen 1 GC - gen 0&1
Full GC - gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

if an objects in generation X survives the GC considering this generation, is
promoted to generation X+1 (or stays in gen2)
when generation isn't collected, we simply treat all objects in that generation as
live

6 / 37

Partitioning - logical

object allocation in gen0/LOH
GC collects given generation and all younger, so we have:

gen 0 GC
gen 1 GC - gen 0&1
Full GC - gen 0&1&2, LOH and POH (kind of LOH & POH treated as gen 2)

if an objects in generation X survives the GC considering this generation, is
promoted to generation X+1 (or stays in gen2)
when generation isn't collected, we simply treat all objects in that generation as
live
generations are considered in various places, fe. �nalization queue is
generational too

6 / 37

Partitioning - physical

7 / 37

Partitioning - physical

8 / 37

Partitioning - physical (Workstation GC)

(a) all-at- once con�guration,

(b) two-stage con�guration (the same as each-block con�guration)

9 / 37

Partitioning - physical (Server GC)

10 / 37

Partitioning - segment "anatomy"

11 / 37

Partitioning - segment "anatomy"

11 / 37

Generations

12 / 37

Generations

13 / 37

(a) Objects A, B and C were allocated.

(b) GC was triggered and only B & C
survived. Gen1 boundary is extended to
include promoted B and C.

(c) Object D was allocated.

(d) GC was triggered and only C & D
survived. Generations boundaries are
extended to include C (promoted to
gen2) and D (promoted to gen1).

(e) Object E was allocated.

(.) and the story continues...

Generations - Sweeping overview

14 / 37

(a) Objects A, B and C were allocated.

(b) GC was triggered and only B & C
survived. Gen1 boundary is extended to
include promoted B and C.

(c) Object D was allocated.

(d) GC was triggered and only C & D
survived. Generations boundaries are
extended to include C (promoted to
gen2) and D (promoted to gen1).

(e) Object E was allocated.

(.) and the story continues...

Generations - Sweeping overview

15 / 37

Generations

16 / 37

Generations - gen0 GC

(a) After Mark

(b) After Sweep or...

(c) After Compact

17 / 37

Generations - gen1 GC

(a) After Mark

(b) After Sweep or...

(c) After Compact

18 / 37

Generations - gen2 GC ("Full GC")

(a) After Mark.

(b) After Sweep or...

(c) After Compact

19 / 37

Generations - gen0 & gen1

While compacting, we may "allocate in the older generation" some promoted plugs
- to make use of free-list allocations and �ght/reuse fragmentation😍

20 / 37

Generations - running out of SOH segment space

At some point gens may grow not to �t into SOH segment - gen0/1 may not have
enough space:

21 / 37

Generations - running out of SOH segment space

At some point gens may grow not to �t into SOH segment - gen0/1 may not have
enough space:

A new ephemeral segment will be created during compacting GC:

21 / 37

Generations - running out of SOH segment space

At some point gens may grow not to �t into SOH segment - gen0/1 may not have
enough space:

A new ephemeral segment will be created during compacting GC:

During this process:

current ephemeral segment is changed into gen2-only - all reachable objects
from gen 1 & 2 are being compacted there
new ephemeral segment - all reachable objects from gen 0 are being
compacted there (as gen 1 objects)
LOH segment as usual

21 / 37

Generations - gen2 segments

And the story continues... current ephemeral segment may be �lled, we need a new
ephemeral segment:

commit a new segment - as just presented
reuse a segment from standby list
an already existing gen2-only segment with small gen2 may be reused as a new
ephemeral segment 🤯 - The old ephemeral segment will become gen2-only
segment

22 / 37

Allocation budget

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical �ow is:

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical �ow is:

we allocate an object

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical �ow is:

we allocate an object
EE/GC can't �nd space for a new allocation context (refer to Episode 07.
Allocations)

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical �ow is:

we allocate an object
EE/GC can't �nd space for a new allocation context (refer to Episode 07.
Allocations)
the GC is triggered - initialy for gen0

23 / 37

Allocation budget

objects are allocated in gen0/LOH or "allocated" (promoted) in gen1/2
thus, generations may grow in time and exceed their allocation budget
GC tracks consumption of allocation budget per generation and uses it to decide
on condemned generation
thus, typical �ow is:

we allocate an object
EE/GC can't �nd space for a new allocation context (refer to Episode 07.
Allocations)
the GC is triggered - initialy for gen0
the GC selects the condemned generation - and the oldest generation with
its allocation budget exceeded is one of the main reasons. Running out of
ephemeral segment may be another, ...

23 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

24 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

changed dynamically on each GC that collects that generation

24 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (*)

24 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (*)
depends mostly on the survival rate (ratio of the size of objects that survived):

high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
small survival rate - smaller allocation budget as opposite to above (and we
want to keep generations small)

24 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (*)
depends mostly on the survival rate (ratio of the size of objects that survived):

high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
small survival rate - smaller allocation budget as opposite to above (and we
want to keep generations small)

the younger generation, the more dynamic change to the survival rate (*)

24 / 37

Allocation budget - total size the GC would like to allow to be spent on allocations
in a particular generation:

changed dynamically on each GC that collects that generation
lies in between given minimum and maximum (*)
depends mostly on the survival rate (ratio of the size of objects that survived):

high survival rate - higher allocation budget as we don't want to promote
prematurely (count on "better" ratio of dead to live objects next time)
small survival rate - smaller allocation budget as opposite to above (and we
want to keep generations small)

the younger generation, the more dynamic change to the survival rate (*)

(*) controlled by per-generation static data 24 / 37

Per-generation static data

1) related to the CPU cache size. In general, a little smaller in case of Workstation mode (�rst number) than in Server mode (second number).

2-3) For Workstation GC with Concurrent version - 6 MB. For Server GC and Workstation GC with Non-concurrent version - half of the ephemeral
segment size

25 / 37

Card tables

26 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations.

27 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

27 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

So, yes. We would "loose" object C 😱

27 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

So, yes. We would "loose" object C 😱 We need to remeber somewhere such "older-
to-younger" references.

27 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

So, yes. We would "loose" object C 😱 We need to remeber somewhere such "older-
to-younger" references. In literature, it is called remembered set.

27 / 37

Card tables

During GC's Mark phase we consider only given condemned and younger
generations. Imagine gen0 GC here:

So, yes. We would "loose" object C 😱 We need to remeber somewhere such "older-
to-younger" references. In literature, it is called remembered set.

BTW, "younger-to-older" references are not a problem due to the "always collect
given and younger generation"👍

27 / 37

Card tables

We could store every single "older-to-younger" reference in some remembered set
but it would introduce super overhead - we may have many such references
changing all the time!

Instead, runtime tracks less granular information about it - covering not single
object with "older-to-younger" reference, but for whole memory region.

28 / 37

Card tables

29 / 37

Card tables

When executing E.field = C, write-barrier updates the card.

30 / 37

Card tables

When executing E.field = C, write-barrier updates the card. Single card covers
256/128 bytes (64/32-bit runtime).

30 / 37

Card tables

When executing E.field = C, write-barrier updates the card. Single card covers
256/128 bytes (64/32-bit runtime). But, for performance, write-barrier sets the whole
byte (0xFF), so 2048/1024 bytes regions are treated "dirty".

30 / 37

Card tables

LEAF_ENTRY JIT_WriteBarrier_PostGrow64, _TEXT
 ...
 mov [rcx], rdx
 ...
PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Lower
 mov rax, 0F0F0F0F0F0F0F0F0h
 ; Check the lower and upper ephemeral region bounds
 cmp rdx, rax
 jb Exit
 ...
PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Upper
 mov r8, 0F0F0F0F0F0F0F0F0h
 cmp rdx, r8
 jae Exit
 ...
PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_CardTable
 mov rax, 0F0F0F0F0F0F0F0F0h
 ; Touch the card table entry, if not already dirty.
 shr rcx, 0Bh
 cmp byte ptr [rcx + rax], 0FFh
 jne UpdateCardTable
 ...
 UpdateCardTable:
 mov byte ptr [rcx + rax], 0FFh
 ...
LEAF_END_MARKED JIT_WriteBarrier_PostGrow64, _TEXT

31 / 37

Card bundles

On top of that, there is card bundle mechanism maintained by MEM_WRITE_WATCH or
manually to have even less granular, high-level starting point to traverse card tables.

32 / 37

Demotion

33 / 37

Generations - Demotion

"if it survives it is promoted to older generation"...
but pinning may destroy this great idea... with fragmentation:

34 / 37

Generations - Demotion

"if it survives it is promoted to older generation"...
but pinning may destroy this great idea... with fragmentation:

34 / 37

Generations - Demotion

"if it survives it is promoted to older generation"...
but pinning may destroy this great idea... with fragmentation:

so, let's introduce demotion - as the opposite of promotion

34 / 37

Generations - Demotion

35 / 37

Generations - Demotion

Demotion from gen1 to gen0:

Demotion from gen1 to gen1:

36 / 37

Generations - Demotion

Sometimes a plug will just not �t and demotion does not help:

37 / 37

Generations - Demotion

Sometimes a plug will just not �t and demotion does not help:

Only some pinned plugs may be demoted:

37 / 37

Generations - Demotion

Sometimes a plug will just not �t and demotion does not help:

Only some pinned plugs may be demoted:

Note. To emphasize it - in the current implementation, only pinned plugs may be
demoted (which may include single non-pinned object in case of extended pinned
plug) 37 / 37

